A Single-to-Differential LNA Topology with Robust Output Gain-Phase Balancing against Balun Imbalance

Miguel A. Martins ¹ and Pui-In Mak ² and Rui P. Martins ², ³

1 – Analog and Mixed Circuit Group, INESC-ID, Lisbon, Portugal
2 – The State Key Laboratory of Analog and Mixed-Signal VLSI, University of Macau, Macao, China
3 – On leave from Instituto Superior Técnico (IST) / TU of Lisbon, Portugal

Abstract—This paper presents a technique to enhance the output balancing precision of a low-noise amplifier (LNA) against balun imbalance. By utilizing two capacitive-cross-coupling common-gate amplifiers in cascode, wideband output balancing, high voltage gain and low noise figure (NF) can be concurrently achieved. A 2.4GHz LNA design example optimized in a 0.13µm CMOS process shows that the tolerable balun’s gain and phase imbalances are up to 2dB and 10º, respectively. With just 3.6mW of power, the NF is 2.6dB at a voltage gain of 30dB.

I. INTRODUCTION

Differential circuits are common in wireless applications as they can reduce even-order distortion and the susceptibility to common-mode noise. In a mixed-signal wireless transceiver, differential RF circuits can help to avoid unwanted common-mode noise couplings through the substrate and supply rails. A differential low-noise amplifier (LNA) is critical to maximize the receiver path sensitivity. The main concern is the need of a single-to-differential circuit to interface directly with the antenna or a band-select filter; both are normally single-ended. Passive baluns (also known as transformers), both off-the-shelf and integrated types, are the components of choice for their ultra-high linearity and reasonable insertion loss. Regrettably, in massive manufacturing (discrete baluns) and different metal conductivities, imbalances due to different parasitic capacitors to the substrate, and different metal conductivities. The proposed LNA addresses this issue by adopting two CCC-CGAs in cascode. Transistors \(M_1 \) and \(M_2 \) (\(M_3 \) and \(M_4 \)) are cross-coupled by capacitors \(C_1 \) and \(C_2 \) (\(C_3 \) and \(C_4 \)). In this way, the overall transconductance \(g_{m_{\text{total}}} \) is approximately doubled with no extra power. Each CCC-CGA can be treated as a voltage-difference amplifier from another viewpoint, offering the desired differential balancing inherently. Their double use in this work significantly increases the precision of the balancing, i.e., from \((v_{1+} - v_{1-})\) to \((v_{2+} - v_{2-})\) and from \((v_{2+} - v_{2-})\) to \((v_{3+} - v_{3-})\). Under this double correcting scheme, the final differential imbalance should be just the residual of the original error. The key features of this LNA are theoretically analyzed next.

II. CIRCUIT DESCRIPTION

The schematic of the proposed LNA is presented in Fig. 1. A balun with a middle-grounded secondary is selected to directly provide the bias currents to the LNA. The balun features the simplest 1:1 inductance ratio to alleviate the implementation of the integrated balun. Ideally, the input balun should divide the single-ended input signal into two equal-amplitude out-of-phase differential signals. In practice, baluns suffer from imperfect single-to-differential conversion. On one hand, if the balun is an external off-the-shelf component, certain ranges of gain and phase imbalances are unavoidable (as defined in the datasheet). On the other hand, if the balun is integrated and is laid out asymmetrically with multiple metal layers in stack [4] the differential output can also show gain and phase imbalances due to different parasitic capacitors to the substrate, and different metal conductivities.

III. CIRCUIT ANALYSIS

The key characteristics of this LNA including input impedance, voltage gain and noise figure are analyzed first. Then, the mathematical treatment of the imbalance correction capability of the LNA is addressed.
Input Impedance – It is calculated based on the incremental model of the LNA as shown in Fig. 2. Assuming that $v_{i1} = v_{i2}$, $v_{o1} = -v_{o2}$ and $c_{gs1} = c_{gs2}$, the input impedance is given by,

$$Z_{in} = \frac{v_{i}}{i_{s}} = sL_{S} - 2sM \left(2sC_{gs1} + g_{m1} \right) \frac{2sM(2sC_{gs1} + g_{m1})}{1 + 2sL_{1}(2sC_{gs1} + g_{m1})}$$ (1)

where M is the mutual inductance: $M = k\sqrt{L_{S}L_{1}} = k\sqrt{L_{S}L_{2}}$. Assuming that $L_{s} = 2L_{1}$, $g_{m1} >> |2sC_{gs1}|$ and $g_{m1} = 1/R_{o}$, Z_{in} can be approximated as,

$$Z_{in} = \frac{2sL_{1}(R_{S} + 2[1 - 2k^{2}]L_{1})}{R_{S} + 2sL_{1}}$$ (2)

Eq. (2) can be used to determine the input resonant frequency. With Z_{a} the resonant frequency is obtained,

$$f_{0} = \frac{1}{2\sqrt{2k^{2} - 1}} \frac{R_{S}}{L_{1}}.$$ (3)

Eq. (3) reveals that f_{0} is independent of C_{g} since v_{o} is determined by the balun and is directly applied to the gate-source terminals of M_{1} and M_{2}. The input impedance is relatively wideband because the Q is low, the same as CCC-CGLNA. It also implies that the impedance matching is insensitive to the input parasitic capacitance.

Voltage Gain – This LNA can be partitioned into 3 stages. Each features an internal voltage gain. If the channel length modulation is neglected, the final gain of the 3 stages can be determined independently. The gain of the 1st stage corresponds to the gain of the balun. Considering Fig. 2 again and assuming that $g_{m1} >> |2sC_{gs1}|$, and $L_{S} = 2L_{1}$, the gain of the 1st stage can be obtained,

$$v_{gs1} = \sqrt{2k} \frac{v_{x}}{1 + 2g_{m1}(1 - 2k^{2})L_{1}s}.$$ (4)

The balun voltage gain has a pole at around $-1/2g_{m}L_{1}$ that must be apart from the resonant frequency desired for the LNA. Neglecting C_{g} and let $v_{gs1} = -v_{gs1} = v_{o1} = v_{o2}$, the gain of the 2nd stage (v_{gs2}) is simply given by the ratio between the transistors transconductances g_{m1}/g_{m2}. Finally, considering that $v_{o} = v_{o1}^{-} - v_{o2}^{+}$, the gain of the 3rd stage is given by,

$$\frac{v_{o}}{v_{gs3}} = g_{m2} \left(\frac{r_{3} + (sL_{3} + r_{3})}{sC_{L}} \right)^{-1}.$$ (5)

r_{3} is the inductor series resistance and C_{L} is the load capacitance. The resonance of the load of the LNA determines the LNA tuning frequency. This is determined by the load capacitance and inductance values. Neglecting r_{3}, the LNA voltage gain is the product of the 3-stage voltage gains,

$$\frac{v_{o}}{v_{gs1}} = g_{m1} \frac{sL_{s}r_{s3}}{r_{s3} + sL_{1} + s^{2}C_{L}L_{2}r_{s3}} \frac{\sqrt{2k}}{1 + 2g_{m1}L_{1}(1 - 2k^{2})s}.$$ (6)

Noise Factor – The noise generated by M_{1} and M_{2} dominate the noise factor, F, of the LNA. Considering a perfect input impedance matching, i.e. $g_{m1} = g_{m2} = 1/R_{o}$, the LNA noise factor is,

$$F = 1 + \left| 1 - \frac{Z_{1}g_{m}}{1 + Z_{1}g_{m}} \right|^{2} \gamma,$$ (7)

where Z_{1} is given by,

$$Z_{1} = \frac{R_{S} + 2[1 - 2k^{2}]L_{1}s}{R_{S} + 2sL_{1}}.$$ (8)

and ϕ is given by,

$$\phi = \frac{2sL_{1}(R_{S} + 2[1 - 2k^{2}]L_{1}s)}{R_{S} + 3L_{S}R_{S} + 2[1 - 2k^{2}]L_{1}s}.$$ (9)

One important feature of the CCC technique is that the noise due to transistors M_{1} and M_{2} is approximately canceled as shown in [1].

Imbalance Calculation – To determine the LNA phase and gain imbalances, the first step is to define the input signal. The input signal corresponds to the difference between the two balun output signals: v_{i1} and v_{i2}. Using v_{i1} as the reference, v_{i2} will correspond to the negation of v_{i1} multiplied by a complex number with gain and phase errors. The differential signal at the balun input is then,

$$v_{i} = v_{i1} - v_{i2} = (1 - \alpha)e^{-j\beta}v_{i1}.$$ (10)

where α is the ratio between the amplitude of both signals and β is the phase error. As a note, the gain error is determined by $20\log(\alpha)$. Now we have to determine the signals at the drain of the two input stages,
\[
\begin{align*}
 v_{d1} &= g_{m1}Z_{\text{load1}}v_{\text{in}} \\
 v_{d2} &= g_{m2}Z_{\text{load2}}v_{\text{in}}
\end{align*}
\] (11)

where \(g_{m2} \) is equal to \(x g_{m1} \), and \(x \) accounts the mismatch between \(M_1 \) and \(M_2 \). \(Z_{\text{load1}} \) and \(Z_{\text{load2}} \) are symmetrical, thus we will just determine \(Z_{\text{load1}} \). \(Z_{\text{load1}} \) is a parallel of the following three impedances: the output impedance of \(M_1 \): \(r_{o1} \), the impedance made by \(M_2 \): \(Z_{\text{load2}} \), and the impedance made by \(M_3 \): \(Z_{\text{load3}} \). The expression of \(Z_{\text{load1}} \) is given by,

\[
Z_{\text{load1}} = r_{o1} \parallel Z_{\text{load2}} \parallel Z_{\text{load3}},
\] (12)

where \(Z_{\text{load2}} \) and \(Z_{\text{load3}} \) are respectively,

\[
\begin{align*}
 Z_{\text{load2}} &= \frac{1}{g_{m2}r_{o2}} + Z_{\text{load2}} \\
 Z_{\text{load3}} &= \frac{1}{g_{m3}r_{o3}} + Z_{\text{load3}}
\end{align*}
\] (13)

Both, \(Z_{\text{load2}} \) and \(Z_{\text{load3}} \) are obtained under the assumption that the impedance seen to the source of \(M_1 \) (\(M_2 \)) is much smaller than that seen to the drain of \(M_1 \) (\(M_2 \)) and \(Z_{\text{load2}} \) and \(Z_{\text{load3}} \) are given by,

\[
Z_{\text{load2}} = Z_{\text{load3}} = Z_{\text{load}} = \left(\frac{sC_{g3} + C_{g4}}{sC_{g3}} \right),
\] (14)

where \(r_{o3} \) is the series resistance of \(L_3 \). The differential voltage \(v_{d1} \),

\[
v_d = v_{d2} - v_{d1} = (Z_{\text{load2}}x - Z_{\text{load3}})g_{m1}v_{\text{in}}
\] (15)

We conclude from (15) that the imbalance just depends on the mismatches inside the circuit and is independent on the mismatches due to the balun. Finally, \(v_o = v_{\text{out}+} - v_{\text{out}-} \) is obtained,

\[
v_o = (sC_{g3} - sC_{g4})Z_{\text{load}}v_{d} + (1 - y)g_{m3}Z_{\text{load}}v_{d}
\] (16)

where \(g_{m4} = y g_{m3} \cdot y \) accounts for the mismatch existing between \(M_3 \) and \(M_4 \). From (16) we conclude that the phase and gain imbalance existing at the LNA output is only due to the mismatch between \(M_3 \) and \(M_4 \). It implies that if \(M_3 \) and \(M_4 \) are purely matched and there is no channel length modulation, independently on the remaining circuit, the output imbalance can be nullified.
robust to the input differential imbalance induced by the balun.

The die size of the LNA using an integrated balun is 510 μm × 750 μm including the bond pads (Fig. 7). The chip is currently under fabrication.

V. CONCLUSIONS

This paper introduced a new differential LNA with robust output gain-phase balancing. Two capacitive-cross-coupling common-gate amplifiers are in cascade to realize double gain-phase equalization. This topology not only realizes a high voltage gain with low noise through current-reuse g_{m}-enhancement, but also corrects robustly a wide range of input gain-phase imbalance under component mismatches. The feasibility has been demonstrated through the design of a 2.4-GHz LNA, which can tolerate up to 2 dB and 10° gain and phase imbalances, respectively.

ACKNOWLEDGEMENT

This work was supported by the RC of Univ. of Macau, Macao Science and Technology Development Fund (FDCT), the Portuguese Foundation for Science and Technology (FCT), and the SE2A project (ENIAC).

REFERENCES